电话咨询 在线咨询 产品定制
电话咨询 在线咨询 产品定制
010-68321050

AI芯片技术研究方向多元化,ASIC的市场未来最明朗

五度易链 2019-04-18 2114 0

专属客服号

微信订阅号

大数据治理

全面提升数据价值

赋能业务提质增效

现在使用的AI芯片的研究方式不尽相同,这些不同的研究方向都有自己的优点和弊端。那么哪种研究方式会成为之后的主流研究方向呢?

现在使用的AI芯片的研究方式不尽相同,这些不同的研究方向都有自己的优点和弊端。那么哪种研究方式会成为之后的主流研究方向呢?

AI芯片研究方向介绍

AI芯片的研发方向主要分两种:一是基于传统冯·诺依曼架构的FPGA(现场可编程门阵列)和ASIC(专用集成电路)芯片,二是模仿人脑神经元结构设计的类脑芯片。其中FPGA和ASIC芯片不管是研发还是应用,都已经形成一定规模;而类脑芯片虽然还处于研发初期,但具备很大潜力,可能在未来成为行业内的主流。

这两条发展路线的主要区别在于,前者沿用冯·诺依曼架构,后者采用类脑架构。你看到的每一台电脑,采用的都是冯·诺依曼架构。它的核心思路就是处理器和存储器要分开,所以才有了CPU(中央处理器)和内存。而类脑架构,顾名思义,模仿人脑神经元结构,因此CPU、内存和通信部件都集成在一起。

两种架构的简要发展史

2007年以前,受限于当时算法和数据等因素,AI对芯片还没有特别强烈的需求,通用的CPU芯片即可提供足够的计算能力。之后由于高清视频和游戏产业的快速发展,GPU (图形处理器)芯片取得迅速的发展。因为 GPU 有更多的逻辑运算单元用于处理数据,属于高并行结构,在处理图形数据和复杂算法方面比 CPU 更有优势,又因为AI深度学习的模型参数多、数据规模大、计算量大,此后一段时间内 GPU 代替了 CPU,成为当时 AI 芯片的主流。

然而 GPU 毕竟只是图形处理器,不是专门用于 AI 深度学习的芯片,自然存在不足,比如在执行AI 应用时,其并行结构的性能无法充分发挥,导致能耗高。与此同时,AI技术的应用日益增长,在教育、医疗、无人驾驶等领域都能看到 AI 的身影。然而GPU 芯片过高的能耗无法满足产业的需求,因此取而代之的是 FPGA 芯片,和 ASIC 芯片。

FPGA 和 ASIC 芯片区别

FPGA 和 ASIC 的区别。FPGA基本原理是在芯片内集成大量的数字电路基本门电路以及存储器,而用户可以通过烧入 FPGA 配置文件来来定义这些门电路以及存储器之间的连线。这种烧入不是一次性的,即用户今天可以把 FPGA 配置成一个微控制器 MCU,明天可以编辑配置文件把同一个 FPGA 配置成一个音频编解码器。ASIC 则是专用集成电路,一旦设计制造完成后电路就固定了,无法再改变。

比较 FPGA 和 ASIC 就像比较乐高积木和模型。举例来说,如果你发现最近星球大战里面 Yoda 大师很火,想要做一个 Yoda 大师的玩具卖,你要怎么办呢?

有两种办法,一种是用乐高积木搭,还有一种是找工厂开模定制。用乐高积木搭的话,只要设计完玩具外形后去买一套乐高积木即可。而找工厂开模的话在设计完玩具外形外你还需要做很多事情,比如玩具的材质是否会散发气味,玩具在高温下是否会融化等等,所以用乐高积木来做玩具需要的前期工作比起找工厂开模制作来说要少得多,从设计完成到能够上市所需要的时间用乐高也要快很多。

FPGA 和 ASIC 也是一样,使用 FPGA 只要写完 Verilog 代码就可以用 FPGA 厂商提供的工具实现硬件加速器了,而要设计 ASIC 则还需要做很多验证和物理设计 (ESD,Package 等等),需要更多的时间。如果要针对特殊场合(如军事和工业等对于可靠性要求很高的应用),ASIC 则需要更多时间进行特别设计以满足需求,但是用 FPGA 的话可以直接买军工级的高稳定性 FPGA 完全不影响开发时间。但是,虽然设计时间比较短,但是乐高积木做出来的玩具比起工厂定制的玩具要粗糙(性能差)一些(下图),毕竟工厂开模是量身定制。

AI芯片技术的现研究趋势

ASIC无论是从性能、面积、功耗等各方面都优于GPU和FPGA,长期来看无论在云端和终端,ASIC都代表AI芯片的未来,目前包括微软、谷歌、英特尔等巨头都重金投到ASIC领域,不过由于目前AI算法快速迭代,且ASIC开发周期较长、需要底层硬件编程、占据芯片成本等,因此虽然前景利好,但也只有实力雄厚的大佬才敢提前布局。

虽然ASIC成本高且难度大,但移动AI芯片设计公司仍已经开始立足于ASIC的深度学习,例如联发科发布的Helio P70中端设备芯片组其内部就自带ASIC方案专用的AI核心APU,不仅具备其他AI芯片所带的诸如美颜、人脸识别、场景优化等功能之外,更是大幅降低了AI芯片的功耗,使得用户在多场景使用环境下,不再为手机电量的大幅消耗而感到担忧。

CPU和GPU都有其专职的工作,例如CPU专注在大型运算,GPU侧重于图形绘制等,过多的功能堆叠只会虚耗电量和提高温度,所以即便骁龙845的性能强劲,但在AI拍照这样的应用场景下,长时间仍会有轻微的发热情况。所以在这样的环境下,AI核的优势显然就更加明显了。因此由CPU和GPU配合AI专核来进行分工协作,反而可以有效提升效能,降低散热。

以时下在图像识别领域以及前沿科技产品中的应用最为广泛的AI人脸识别技术为例,常见的人脸识别其实是一个“扫描检测”加“结果判别”的过程,而这个“扫描检测”的过程中包括五官坐标定位、人脸属性识别、人脸特征提取等等,在“结果判别“中更涉及到人脸验证、人脸识别、活体验证等多个特性,它已经不是一个简单的算法,而是涉及到CPU、GPU、VPU、DLA 等多个运算单元,跨单元的运算很显然会造成消费体验的不佳,更别提到结果涉及的端运行或是云运行问题,所以开发与之相应的AI人工智能神经网络算法是趋势,而这点通过网络上流出的联发科P60人脸识别技术对比图也能窥其一二。前者虽然定位中端,但却拥有单独的AI人工智能单元,人脸识别速度比同期的骁龙845和骁龙710都更胜一筹,可见高效节能的AI独立单元,即ASIC专核专用是未来人工智能终端最基本的要求。

ASIC 芯片是针对特定需求而定制的专用芯片。虽然牺牲了通用性,但 ASIC 无论是在性能、功耗还是体积上,都比 FPGA 和 GPU 芯片有优势,特别是在需要芯片同时具备高性能、低功耗、小体积的移动端设备上,比如我们手上的手机。

但是,因为其通用性低,ASIC 芯片的高研发成本也可能会带来高风险。然而如果考虑市场因素,ASIC芯片其实是行业的发展大趋势。

所以,随着近几年人工智能算法和应用领域的快速发展,以及研发上的成果和工艺上的逐渐成熟,ASIC 芯片正在成为人工智能计算芯片发展的主流。

从现在人工智能的发展速度和应用来看,在之后的市场ASIC会成为主要市场,而其在研究过程中的高投入也为其研发带来了风险,但是其仍然是最能保证人工智能利用的研究方向。


本文由五度数科整理,转载请标明出处,违者必究!

评论

产业专题

申请产品定制

请完善以下信息,我们的顾问会在1个工作日内与您联系,为您安排产品定制服务

  • *姓名

  • *手机号

  • *验证码

    获取验证码
    获取验证码
  • *您的邮箱

  • *政府/园区/机构/企业名称

  • 您的职务

  • 备注