电话咨询 在线咨询 产品定制
电话咨询 在线咨询 产品定制
010-68321050

智能芯片有哪些优异之处

五度易链 2018-10-18 1956 83

专属客服号

微信订阅号

科技最前沿

剖析产业发展现状

为区域/园区工作者洞悉行业发展

现如今,AI已经应用于医学,化工,图像识别,智能汽车中,人工智能芯片相比传统的芯片更加智能,通过对大量数据行为分析获得智能化信息,做出智能化信息处理。

 

  现如今,AI已经应用于医学,化工,图像识别,智能汽车中,人工智能芯片相比传统的芯片更加智能,通过对大量数据行为分析获得智能化信息,做出智能化信息处理。

  2017年,当AlphaGo在围棋大战中完胜柯洁后,各大媒体对人工智能的讨论就不绝于耳,甚至有人担心机器会具备自主思维,终有一天会像电影《终结者》中的场景一样对人类造成生存威胁。不管这种危机是否存在,但必须认识到人工智能芯片在架构和功能特点上与传统的CPU是有着非常大的区别。

  模拟了大脑机制

  传统的CPU运行的所有的软件是由程序员编写,完成的固化的功能操作。其计算过程主要体现在执行指令这个环节。但与传统的计算模式不同,人工智能要模仿的是人脑的神经网络,从最基本的单元上模拟了人类大脑的运行机制。它不需要人为的提取所需解决问题的特征或者总结规律来进行编程。

  人工智能是在大量的样本数据基础上,通过神经网络算法训练数据,建立了输入数据和输出数据之间的映射关系,其最直接的应用是在分类识别方面。例如训练样本的输入是语音数据,训练后的神经网络实现的功能就是语音识别,如果训练样本输入是人脸图像数据,训练后实现的功能就是人脸识别。

  通常来说,人工智能包括机器学习和深度学习,但不管是机器学习还是深度学习都需要构建算法和模式,以实现对数据样本的反复运算和训练,降低对人工理解功能原理的要求。

  因此,人工智能芯片需要具备高性能的并行计算能力,同时要能支持当前的各种人工神经网络算法。传统CPU由于计算能力弱,支撑深度学习的海量数据并行运算,且串行的内部结构设计架构为的是以软件编程的方式实现设定的功能,并不适合应用于人工神经网络算法的自主迭代运算。传统CPU架构往往需要数百甚至上千条指令才能完成一个神经元的处理,在AI芯片上可能只需要一条指令就能完成。

  实际运用更加广泛

  目前对AI芯片的需求主要集中方面。

  从应用场景角度看,AI芯片主要有两个方向,一个是在数据中心部署的云端,一个是在消费者终端部署的终端。从功能角度看,AI芯片主要做两个事情,一是Training(训练),二是Inference(推理)。

  AI芯片的大规模应用分别在云端和终端。云端的AI芯片同时做两个事情:Training和Inference。Training即用大量标记过的数据来“训练”相应的系统,使之可以适应特定的功能,比如给系统海量的“猫”的图片,并告诉系统这个就是“猫”,之后系统就“知道”什么是猫了;Inference即用训练好的系统来完成任务,接上面的例子,就是你将一张图给之前训练过的系统,让他得出这张图是不是猫这样的结论。

  Training和Inference在目前大多数的AI系统中,是相对独立的过程,其对计算能力的要求也不尽相同。Training需要极高的计算性能,需要较高的精度,需要能处理海量的数据,需要有一定的通用性,以便完成各种各样的学习任务。

  人工智能芯片在各个行业的市场应用都验证了它的实用价值,各大公司对AI芯片的技术投入也说明了它将在未来得到良好发展。


本文由五度数科整理,转载请标明出处,违者必究!

评论

产业专题

申请产品定制

请完善以下信息,我们的顾问会在1个工作日内与您联系,为您安排产品定制服务

  • *姓名

  • *手机号

  • *验证码

    获取验证码
    获取验证码
  • *您的邮箱

  • *政府/园区/机构/企业名称

  • 您的职务

  • 备注