专属客服号
微信订阅号
全面提升数据价值
赋能业务提质增效
根据当前数据,可穿戴设备市场这几年的增长速度开始放缓。从长远来看,这也是一种好状况,证明这个行业的发展开始趋于稳定。
根据中国科学院文献情报中心和投中研究院最新公布的《2018可穿戴传感器产业技术报告》显示,自2016年以来,全球可穿戴设备出货量与营收规模约以13%的年增长率保持平稳增长,其营收规模已经达到了近350亿美元/年。
可穿戴传感器的当前应用
可穿戴传感器除了具有压力传感功能,还具有现实和潜在应用的多种功能,体温和脉搏检测、表情识别和运动监测等。
1,温度检测
人体皮肤对温度的感知帮助人们维持体内外的热量平衡。电子皮肤的概念最早由 Rogers 等提出,由多功能二极管、无线功率线圈和射频发生器等部件组成。这样的表皮电子对温度和热导率的变化非常敏感,可以评价人体生理特征的变化,比如皮肤含水量,组织热导率,血流量状态和伤口修复过程。为了提高空间分辨率、信噪比和响应速度,有源矩阵设计成为了最优选择之一。Ha等制备了包含单壁碳纳米管薄膜晶体管的,可拉伸的聚苯胺纳米纤维温度传感器有源矩阵。其展示了 1.0%•℃-1的高电阻灵敏性,在15到45 ℃范围内得到了1.8 s 的响应时间,在双向拉伸 30%下依然保持稳定。
2,脉搏检测
可穿戴个人健康监护系统被广泛认为是下一代健康监护技术的核心解决方案。监护设备不断地感知、获取、分析和存储大量人体日常活动中的生理数据,为人体的健康状况提供必要的、准确的和长期的评估和反馈。在脉搏监测领域,可穿戴传感器具有以下应用优势: (1)在不影响人体运动状态的前提下长时间的采集人体日常心电数据,实时的传输至监护终端进行分析处理; (2)数据通过无线电波进行传输,免除了复杂的连线。可以粘附在皮肤表面的电学矩阵在非植入健康监测方面具有明显优势,而且超轻超薄,利于携带。最近,鲍哲楠等发展了一种基于微毛结构的柔性压力传感器(见图6)。这种传感器对信号的放大作用很强。 通过传感器与不规则表皮的有效接触最大化,观察到了大约12倍的信噪比增强。另外,这种 PDMS 的微毛结构表面层提供了生物兼容性的非植入皮肤共形附着。最后,这种便携式的传感器可以无线传输信号, 即使微弱的深层颈内静脉搏动也可以获取到。
3,运动监测
在能与人体交互的诊疗电学设备中,监控人体运动的应力传感器备受瞩目。监测人体运动的策略可以分为两种: 一种是监测大范围运动,另一种是监测像呼吸,吞咽和说话过程中胸和颈的细微运动。适用于这两种策略的传感器必须具备好的拉伸性和高灵敏度。而传统的基于金属和半导体的应力传感器不能胜任。所以,具备好的拉伸性和高灵敏度的柔性可穿戴电子传感器在运动监测领域至关重要。Kim等通过干纺的方法制备了高度取向性的碳纳米管纤维弹性应力传感器。 因为其在柔性基底上制备,结果得到了超过900%的拉紧程度,高灵敏度,快速响应和好的持久性。高弹性的应变仪在不同体系中具有巨大应用潜力,如人体运动和可穿戴传感器。Hata 等制备了定向排列的单壁碳纳米管薄膜。当拉伸时,碳纳米管破裂成岛-桥-间隙结构,形变可以达到280%(是传统金属拉力计的50倍)。将这种传感器组装在长袜、绷带和手套上,可以监测不同类型的动作,比如移动、打字、呼吸和讲话等。
可穿戴传感器的潜在发展方向
未来,传感器感测多个物理信号的功能需求和环境感知应用对于实时工作传感器处理的需求将不断增长。传感器技术的潜在发展方向:
多传感器融合;选择具有良好生物兼容性的传感器材料;低功耗下具有高灵敏度。
首先,可穿戴设备集成更多传感器,这一趋势未来几年还将加快。人们对于可穿戴设备的功能需求不断增加,这就需要集成更多的传感器。集成更多传感器的明显优势在于,能增加设备的功能,从而使其能够测量更多参数。另外,还能提高所收集数据的精确性。
其次,可穿戴设备需要更好的符合人体工程学设计,更好的贴合人类的肢体,因此新材料的应用,实现柔性可穿戴电子传感器的高分辨率、高灵敏、快速响应、低成本制造和复杂信号检测仍然是一个很大的挑战。
现阶段的可穿戴设备要在续航和能耗方面进行改进,可以从可穿戴设备使用的电源方面下手解决。从现在的科技来分析,如果能够解决电池的续航问题,可穿戴设备的市场扩展会增大。
本文由五度数科整理,转载请标明出处,违者必究!
请完善以下信息,我们的顾问会在1个工作日内与您联系,为您安排产品定制服务
评论